跳到主要內容

【Azure OpenAI】o1 模型與 2024-09-01-preview API

距離上篇在 Early Access Playground 試用 o1 模型後又過了兩週,今天終於等到 API 開放使用啦!本篇將紀錄如何使用 Python SDK 存取 o1 模型。 系列文章 【Azure OpenAI】快速試用 o1 模型 模型佈署 在先前開放的 Early Access Playground 中使用 o1 是不需要另外佈署模型的,不過回到使用 API 來存取 o1 模型,就需要像之前的模型一樣先進行佈署才能使用,相信大家都很熟悉了。 使用 Python SDK 一樣使用熟悉的 openai 套件: 2024-09-01-preview 初始化的方式與先前模型都一樣,需要注意的是 o1 模型目前只能使用最新的 API 版本 2024-09-01-preview 來訪問。 Chat Completions 將 model 填入 o1-preview ,或是你的模型佈署名稱, messages 也一樣是歷史對話堆疊的 List。 回應如下: 查看 Token 使用量 內建 Chain of Thought 的 o1 比起過往的模型會消耗較多的 Token,因此我們特別把 Token 使用量拉出來看。 回應如下: 其中 prompt_tokens 、 completion_tokens 、 total_tokens 在先前的 API 就已經存在了,分別代表Token 的 Input、Output 與總使用量,而在新的 completion_tokens_details 中可以看到  reasoning_tokens 使用了 320 個 Tokens,居然佔了總輸出 Token 的 80% 以上! 控制 Token 成本 已往我們可以使用  max_tokens 參數來控制 Token 的用量,但在 o1 模型中棄用了 max_tokens ,取而代之的是使用  max_completion_tokens 參數,來看看這段程式碼: 回應如下: 沒東西?那再看一次 Token 量。 回應如下: Token 居然是有被使用的! 這表示 max_completion_tokens 並不像過往使用  max_tokens 這麼簡單,先前在回應遇到...

【Azure AI Vision】快速試用 Vision Studio

在 GPT 當道的今天,似乎比較少看到有人討論 Computer Vision,近期剛好因為一些專案有機會接觸到這個服務,就順手留下一些紀錄囉。

Computer Vision 屬於 Azure AI Service 中的其中一項服務,雖然看起來只是其中一部分,不過其實包含了非常多種與電腦視覺有關的 AI 功能,而近期這類的 AI 服務都流行先給你一個簡單的 Demo 介面,讓你可以滑鼠簡單點一點就體驗到 AI 的強大之處,也確實展演效果十足,所以大部分在接觸一個新服務時都建議從 Studio 開始著手。

建立 Computer Vision

如前面所提,Computer Vision 是 Azure AI Service 中的一項服務,所以建立時可以先搜尋到 AI Service,左側就可以看到 Computer Vision,點擊上方建立。

建立 Computer Vision

這類單純 API 的服務建立時都不會有太複雜的設定,如果只是想要測試功能的朋友,建議地區都先選在美東,尤其是 AI 相關服務近期都更新的非常快,而美東都會是首批開放的地區。

再者是 Azure AI Service 都會有免費試用額度,其實最建議是都先建在 F0 免費層,不過後續文章還會使用到其他進階功能,如果想照著文章走也可以直接建立 S1 層,畢竟這種 API 服務只是測試的話,幾乎不用幾塊錢的。

地區建議選美東

建立完成就會看到 Vision Studio 的入口了。

前往Vision Studio 

影像標題

可以先從簡單的功能開始,影像標題可以輸入一張圖片後,輸出一句符合圖片的標題。

影像標題

在 Vision Studio 中測試功能時,記得都需要在上方 Try it out 的方框中打勾,才能開始使用功能。

另外 Vision Studio 這邊的 UI 設計都大同小異,基本上左半部分可以讓你上傳本地端的圖片,上方也會提供一些範例圖片,讓你直接點擊使用,而右邊就會顯示模型 Inference 後的結果,這個結果可以改由 JSON 呈現,方便後續開發時可以直接知道 API 的規格,算是簡單明瞭。

這邊可以很清楚的看到 "text": "a group of cows grazing in a field" 就是生成出的結果,另外也有提供 "confidence": 0.8611457943916321 做為參考依據。

OCR

再來可以看看 OCR 這個功能,也是一個簡單強大的功能。

OCR

這邊 Studio 感覺還存在一些 Bug,如果建立的是 Computer Vision 的資源,它會不讓你在 UI 上做測試,所以下圖是我另外建立 Multi-Service Account 後才得到的結果,不過使用 SDK 或 API 呼叫的話就是正常的喔。

OCR 輸出結果
可以看到 OCR 的 JSON 中會連文字的 Bounding Box 座標都一併輸出,在後續開發上都能直接取用到。

結論

其他還有蠻多功能都可以直接在 Vision Studio 上,透過滑鼠簡單點一點就能使用的,建議大家都可以建一個免費資源去玩玩看。

Computer Vision 還有另一個比較重要的功能:Custom Model,可以讓你使用自己的圖像來訓練「影像分類」或「物件辨識」任務的客製化模型,這個功能使用上會比較複雜,在 Vision Studio 上的操作也是步驟比較多,在下一篇中會著重介紹該如何使用 Computer Vision 中的 Custom model,請繼續觀看!

系列文章

留言

這個網誌中的熱門文章

【Azure OpenAI】購買 PTU 時微軟不會告訴你的事

Provisioned Throughput Units 一直是目前在 Azure OpenAI 對於延遲問題的最有效解法,同時也是官方最推薦的方案。有別於基本的隨付即用,PTU 具有穩定、可預測的延遲等優勢,適合用於正式上線的生產環境。 但 PTU 的成本是一個不可忽視的問題,儘管選購最小單位量的 PTU,也是需要應用到達一定規模後才看得出使用效益。在確認是否購買 PTU 時,除了詳細閱讀官方文件並使用官方推出的計算機規劃額度外,以下幾點或許也是你該注意的。 不可自行購買 PTU 首先,是的,截自撰文當日 (2024/07/09) PTU 只能透過微軟業務窗口洽詢購買細節,這可能對於多數用戶是不友善的,但我相信這個過程很快就能得到優化。 相關連結: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput#how-do-i-get-access-to-provisioned PTU 的可用區域僅供參考 在官方文件中記錄了下述表格,其中詳細的呈現各種模型的 PTU 在不同地區的可用性,但這張表只是一個參考,因為當你洽詢業務窗口時你會得到另一張不同的表格。 其中對於台灣用戶可能最有影響的,是我們沒辦法在日本東部購買 gpt-4o 模型的 PTU,對於想透過購買 PTU 以降低模型延遲的用戶來說這是一個矛盾的選擇,當然更不用提隨之產生的跨區傳輸量成本。 一樣截至撰文為止,為何在打勾區域✅無法購買的問題,官方並沒有給出任何理由,或許是我們採購量沒有達到官方需要解釋的程度😔 相關連結: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput#what-models-and-regions-are-available-for-provisioned-throughput 有別於你認知的定價策略 承如前述,PTU 的成本絕對是導入時的重要考量點。 PTU 的售價到底是多少 事實上 PTU 的官方售價早就是公開的秘密,稱之為秘密是因為 PTU 的售價截至目前並沒有被列在官方文件或定價計算機中,但在最新的 Azure OpenAI S...

【Azure OpenAI】o1 模型與 2024-09-01-preview API

距離上篇在 Early Access Playground 試用 o1 模型後又過了兩週,今天終於等到 API 開放使用啦!本篇將紀錄如何使用 Python SDK 存取 o1 模型。 系列文章 【Azure OpenAI】快速試用 o1 模型 模型佈署 在先前開放的 Early Access Playground 中使用 o1 是不需要另外佈署模型的,不過回到使用 API 來存取 o1 模型,就需要像之前的模型一樣先進行佈署才能使用,相信大家都很熟悉了。 使用 Python SDK 一樣使用熟悉的 openai 套件: 2024-09-01-preview 初始化的方式與先前模型都一樣,需要注意的是 o1 模型目前只能使用最新的 API 版本 2024-09-01-preview 來訪問。 Chat Completions 將 model 填入 o1-preview ,或是你的模型佈署名稱, messages 也一樣是歷史對話堆疊的 List。 回應如下: 查看 Token 使用量 內建 Chain of Thought 的 o1 比起過往的模型會消耗較多的 Token,因此我們特別把 Token 使用量拉出來看。 回應如下: 其中 prompt_tokens 、 completion_tokens 、 total_tokens 在先前的 API 就已經存在了,分別代表Token 的 Input、Output 與總使用量,而在新的 completion_tokens_details 中可以看到  reasoning_tokens 使用了 320 個 Tokens,居然佔了總輸出 Token 的 80% 以上! 控制 Token 成本 已往我們可以使用  max_tokens 參數來控制 Token 的用量,但在 o1 模型中棄用了 max_tokens ,取而代之的是使用  max_completion_tokens 參數,來看看這段程式碼: 回應如下: 沒東西?那再看一次 Token 量。 回應如下: Token 居然是有被使用的! 這表示 max_completion_tokens 並不像過往使用  max_tokens 這麼簡單,先前在回應遇到...

【Azure OpenAI】快速試用 o1 模型

在 OpenAI 與 Azure OpenAI 同時發佈 o1 系列模型的一週後,我也順利通過 Azure OpenAI 的使用申請啦!本篇就來快速試用一下最新的o1 系列模型。 提出申請 目前如果要使用 o1 系列模型都需要經過微軟的資格審查,申請表單可以參考以下連結,表單只需要填寫一份,申請通過後 o1-preview 和 o1-mini 兩個模型都能使用。 相關連結: https://aka.ms/oai/modelaccess 使用 AI Studio 首先你必須要有一個位於 美東 2 地區的 Azure OpenAI 資源,不管是原有的或是新建立的資源都可以。 因為目前 o1 系列模型還處於早期訪問階段,資源中不需要自行佈署模型,取而代之的是需要透過 Early Access Playground 才能使用到 o1 系列模型。 而這次比較特別的是只能使用 AI Studio 的 Playground,看得出來微軟要慢慢整併掉 Azure OpenAI Studio 了。 草莓問題 這次就拿近期已經被大家玩爛的草莓問題來測試,在這個問題中我們會詢問 GPT 在「Strawberry」這個單字裡包含了多少個字母「r」,沒錯,這個草莓問題就是這麼簡單無聊,但結果卻出乎意料。 gpt-4o:兩次 gpt-4o 會有非常高的機率回答:兩次,看似如此簡單的問題又能讓 gpt-4o 屢屢回答錯誤,這就是草莓問題出名的原因,大家也可以自己嘗試看看。 o1-preview:三次 反觀加入 Chain of Thought 概念的 o1-preview 就輕鬆解決了這個草莓問題 😂 總結 根據官方資訊,具有 Chain of Thought 的 o1 模型犧牲了回應的即時性,但大幅改善在邏輯與推理類型問題中的表現,同時成本方面 o1-preview 相較 gpt-4o-0806 貴了 6 倍,對於企業來說就需要好好思考是否有適用的情境了,不過現階段還是繼續期待 API 可用的那天。