跳到主要內容

【Azure OpenAI】o1 模型與 2024-09-01-preview API

距離上篇在 Early Access Playground 試用 o1 模型後又過了兩週,今天終於等到 API 開放使用啦!本篇將紀錄如何使用 Python SDK 存取 o1 模型。 系列文章 【Azure OpenAI】快速試用 o1 模型 模型佈署 在先前開放的 Early Access Playground 中使用 o1 是不需要另外佈署模型的,不過回到使用 API 來存取 o1 模型,就需要像之前的模型一樣先進行佈署才能使用,相信大家都很熟悉了。 使用 Python SDK 一樣使用熟悉的 openai 套件: 2024-09-01-preview 初始化的方式與先前模型都一樣,需要注意的是 o1 模型目前只能使用最新的 API 版本 2024-09-01-preview 來訪問。 Chat Completions 將 model 填入 o1-preview ,或是你的模型佈署名稱, messages 也一樣是歷史對話堆疊的 List。 回應如下: 查看 Token 使用量 內建 Chain of Thought 的 o1 比起過往的模型會消耗較多的 Token,因此我們特別把 Token 使用量拉出來看。 回應如下: 其中 prompt_tokens 、 completion_tokens 、 total_tokens 在先前的 API 就已經存在了,分別代表Token 的 Input、Output 與總使用量,而在新的 completion_tokens_details 中可以看到  reasoning_tokens 使用了 320 個 Tokens,居然佔了總輸出 Token 的 80% 以上! 控制 Token 成本 已往我們可以使用  max_tokens 參數來控制 Token 的用量,但在 o1 模型中棄用了 max_tokens ,取而代之的是使用  max_completion_tokens 參數,來看看這段程式碼: 回應如下: 沒東西?那再看一次 Token 量。 回應如下: Token 居然是有被使用的! 這表示 max_completion_tokens 並不像過往使用  max_tokens 這麼簡單,先前在回應遇到...

【Azure Container Registry】使用 acr purge 與 az acr task 自動清理舊版映像

在前一篇 ACR 的文章中提到了 Manifest 與 Tag 兩者間的關係,並簡單提到了一個 acr purge 指令來清除沒有 Tag 的 Image。而這篇就來詳細看一下 acr purge 指令的用法,並且紀錄兩組我自己常用的 acr purge 指令,最後再透過 az acr task 建立能定時清理的 Image 的排程。

這篇不會再重複建立 ACR 的過程和說明 Manifest 與 Tag 的關係,所以如果還沒看過前篇文章的朋友,建議可以先由以下連結進入觀看喔!

系列文章

acr purge

acr purge 是我們主要用來清理 Image 指令,以下直接看一個常見的範例:

參數說明:

  • --filter:必要參數,Image 與其 Tag 的名稱正則表達式,例如使用 --filter 'hello-world:.*' 可以塞選出名為 hello-world 的所有 Image。

  • --ago:必要參數,超過這個時間的 Image 都會被刪除,例如使用 --ago 1d2h3m 可以刪除存在超過 1 天 2 小時又 3 分的 Image。
  • --untagged:刪除所有沒有 Tag 的 Image ,需要注意的是這個參數不受 --ago 影響。
  • --dry-run:代表僅列出會被刪除的 Image,但不會實際執行刪除動作,是在測試時非常好用的參數。

acr purge 實際使用時會搭配 az acr run 指令來運行,所以一般都會使用以下這種寫法:

使用情境

因為多數遇到的使用方式都是多個專案共用一個 ACR,所以以下紀錄兩個我常用的參數組合,都是由管理者的角度,對所有 Image 有一致的刪除規則。

移除所有建立超過 7 天的 Image 並保留最新一個版本

算是一個最基本的情境,移除建立過久的 Image 外,考量到有像 AKS 這種服務,可能會有容器重啟的問題,因此不論時間長短都保留下最新版本的 Image 供使用。

立即移除所有未上 Tag 的 Image

主要就是使用 --untagged 來找到未上 Tag 的 Image,但如果直接使用 --filter '.*:.*'--ago 0d 就會移除所有在 ACR 內的 Image,是一個非常可怕的組合 😖

所以這邊比較有技巧的地方就是指定一個假的 Tag 名稱,讓 --filter 永遠找不到任何符合的 Image,不過這時 --untagged 參數依舊可以正常運行。

使用 az acr task 建立排程

以上我們已經了解如何使用 acr purge 來移除 Image,再來我們一定會希望是固定時間的排程執行,一樣直接看範例

主要就是將 az acr run 更換為 az acr task create,並且使用 --schedule 參數來指定排程時間。


建立好後 Portal 上的「服務」→「工作」也可以看到排程,但目前 UI 就這樣了,看不到更進一步的資訊。

總結

在有前一篇 Manifest 與 Tag 的觀念後,再加上使用 acr purgeaz acr task 的自動化工具,幾乎讓 ACR 的管理工作量降到最低,真是後悔沒有早點開始研究這塊 😌

留言

這個網誌中的熱門文章

【Azure OpenAI】購買 PTU 時微軟不會告訴你的事

Provisioned Throughput Units 一直是目前在 Azure OpenAI 對於延遲問題的最有效解法,同時也是官方最推薦的方案。有別於基本的隨付即用,PTU 具有穩定、可預測的延遲等優勢,適合用於正式上線的生產環境。 但 PTU 的成本是一個不可忽視的問題,儘管選購最小單位量的 PTU,也是需要應用到達一定規模後才看得出使用效益。在確認是否購買 PTU 時,除了詳細閱讀官方文件並使用官方推出的計算機規劃額度外,以下幾點或許也是你該注意的。 不可自行購買 PTU 首先,是的,截自撰文當日 (2024/07/09) PTU 只能透過微軟業務窗口洽詢購買細節,這可能對於多數用戶是不友善的,但我相信這個過程很快就能得到優化。 相關連結: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput#how-do-i-get-access-to-provisioned PTU 的可用區域僅供參考 在官方文件中記錄了下述表格,其中詳細的呈現各種模型的 PTU 在不同地區的可用性,但這張表只是一個參考,因為當你洽詢業務窗口時你會得到另一張不同的表格。 其中對於台灣用戶可能最有影響的,是我們沒辦法在日本東部購買 gpt-4o 模型的 PTU,對於想透過購買 PTU 以降低模型延遲的用戶來說這是一個矛盾的選擇,當然更不用提隨之產生的跨區傳輸量成本。 一樣截至撰文為止,為何在打勾區域✅無法購買的問題,官方並沒有給出任何理由,或許是我們採購量沒有達到官方需要解釋的程度😔 相關連結: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/provisioned-throughput#what-models-and-regions-are-available-for-provisioned-throughput 有別於你認知的定價策略 承如前述,PTU 的成本絕對是導入時的重要考量點。 PTU 的售價到底是多少 事實上 PTU 的官方售價早就是公開的秘密,稱之為秘密是因為 PTU 的售價截至目前並沒有被列在官方文件或定價計算機中,但在最新的 Azure OpenAI S...

【Azure OpenAI】o1 模型與 2024-09-01-preview API

距離上篇在 Early Access Playground 試用 o1 模型後又過了兩週,今天終於等到 API 開放使用啦!本篇將紀錄如何使用 Python SDK 存取 o1 模型。 系列文章 【Azure OpenAI】快速試用 o1 模型 模型佈署 在先前開放的 Early Access Playground 中使用 o1 是不需要另外佈署模型的,不過回到使用 API 來存取 o1 模型,就需要像之前的模型一樣先進行佈署才能使用,相信大家都很熟悉了。 使用 Python SDK 一樣使用熟悉的 openai 套件: 2024-09-01-preview 初始化的方式與先前模型都一樣,需要注意的是 o1 模型目前只能使用最新的 API 版本 2024-09-01-preview 來訪問。 Chat Completions 將 model 填入 o1-preview ,或是你的模型佈署名稱, messages 也一樣是歷史對話堆疊的 List。 回應如下: 查看 Token 使用量 內建 Chain of Thought 的 o1 比起過往的模型會消耗較多的 Token,因此我們特別把 Token 使用量拉出來看。 回應如下: 其中 prompt_tokens 、 completion_tokens 、 total_tokens 在先前的 API 就已經存在了,分別代表Token 的 Input、Output 與總使用量,而在新的 completion_tokens_details 中可以看到  reasoning_tokens 使用了 320 個 Tokens,居然佔了總輸出 Token 的 80% 以上! 控制 Token 成本 已往我們可以使用  max_tokens 參數來控制 Token 的用量,但在 o1 模型中棄用了 max_tokens ,取而代之的是使用  max_completion_tokens 參數,來看看這段程式碼: 回應如下: 沒東西?那再看一次 Token 量。 回應如下: Token 居然是有被使用的! 這表示 max_completion_tokens 並不像過往使用  max_tokens 這麼簡單,先前在回應遇到...

【Azure OpenAI】快速試用 o1 模型

在 OpenAI 與 Azure OpenAI 同時發佈 o1 系列模型的一週後,我也順利通過 Azure OpenAI 的使用申請啦!本篇就來快速試用一下最新的o1 系列模型。 提出申請 目前如果要使用 o1 系列模型都需要經過微軟的資格審查,申請表單可以參考以下連結,表單只需要填寫一份,申請通過後 o1-preview 和 o1-mini 兩個模型都能使用。 相關連結: https://aka.ms/oai/modelaccess 使用 AI Studio 首先你必須要有一個位於 美東 2 地區的 Azure OpenAI 資源,不管是原有的或是新建立的資源都可以。 因為目前 o1 系列模型還處於早期訪問階段,資源中不需要自行佈署模型,取而代之的是需要透過 Early Access Playground 才能使用到 o1 系列模型。 而這次比較特別的是只能使用 AI Studio 的 Playground,看得出來微軟要慢慢整併掉 Azure OpenAI Studio 了。 草莓問題 這次就拿近期已經被大家玩爛的草莓問題來測試,在這個問題中我們會詢問 GPT 在「Strawberry」這個單字裡包含了多少個字母「r」,沒錯,這個草莓問題就是這麼簡單無聊,但結果卻出乎意料。 gpt-4o:兩次 gpt-4o 會有非常高的機率回答:兩次,看似如此簡單的問題又能讓 gpt-4o 屢屢回答錯誤,這就是草莓問題出名的原因,大家也可以自己嘗試看看。 o1-preview:三次 反觀加入 Chain of Thought 概念的 o1-preview 就輕鬆解決了這個草莓問題 😂 總結 根據官方資訊,具有 Chain of Thought 的 o1 模型犧牲了回應的即時性,但大幅改善在邏輯與推理類型問題中的表現,同時成本方面 o1-preview 相較 gpt-4o-0806 貴了 6 倍,對於企業來說就需要好好思考是否有適用的情境了,不過現階段還是繼續期待 API 可用的那天。